skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Selvi, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study the magnetospheric evolution of a nonaccreting spinning black hole (BH) with an initially inclined split monopole magnetic field by means of 3D general relativistic magnetohydrodynamic simulations. This serves as a model for a neutron star (NS) collapse or a BH–NS merger remnant after the inherited magnetosphere has settled into a split monopole field creating a striped wind. We show that the initially inclined split monopolar current sheet aligns over time with the BH equatorial plane. The inclination angle evolves exponentially toward alignment, with an alignment timescale that is inversely proportional to the square of the BH angular velocity, where higher spin results in faster alignment. Furthermore, magnetic reconnection in the current sheet leads to exponential decay of event-horizon-penetrating magnetic flux with nearly the same timescale for all considered BH spins. In addition, we present relations for the BH mass and spin in terms of the period and alignment timescale of the striped wind. The explored scenario of a rotating, aligning, and reconnecting current sheet can potentially lead to multimessenger electromagnetic counterparts to a gravitational-wave event due to the acceleration of particles powering high-energy radiation, plasmoid mergers resulting in coherent radio signals, and pulsating emission due to the initial misalignment of the BH magnetosphere. 
    more » « less
  2. Abstract Magnetic reconnection can power spectacular high-energy astrophysical phenomena by producing nonthermal energy distributions in highly magnetized regions around compact objects. By means of two-dimensional fully kinetic particle-in-cell (PIC) simulations, we investigate relativistic collisionless plasmoid-mediated reconnection in magnetically dominated pair plasmas with and without a guide field. In X-points, where diverging flows result in a nondiagonal thermal pressure tensor, a finite residence time for particles gives rise to a localized collisionless effective resistivity. Here, for the first time for relativistic reconnection in a fully developed plasmoid chain, we identify the mechanisms driving the nonideal electric field using a full Ohm law by means of a statistical analysis based on our PIC simulations. We show that the nonideal electric field is predominantly driven by gradients of nongyrotropic thermal pressures. We propose a kinetic physics motivated nonuniform effective resistivity model that is negligible on global scales and becomes significant only locally in X-points. It captures the properties of collisionless reconnection with the aim of mimicking its essentials in nonideal magnetohydrodynamic descriptions. This effective resistivity model provides a viable opportunity to design physically grounded global models for reconnection-powered high-energy emission. 
    more » « less